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To descend into the stability domain, the standard ALGOL program for searching for
the extremum of a function of five arguments by the gradient method was used, The
penalty function (1,10), depending on the Hurwitz inequalities, was minimized by the
discrete algorithm in the program,

The lower bound C; ., = 0.0002,was imposed on the control parameters since they
should not be negative, The factor ® to accelerate the computations was taken equal
to @ = 10%1s for values of Hyy << 1.

The descent trajectory of the five control parameters of the automatic system and the
stability domain were computed on the BESM-4 computer, The results of the computa-
tion are shown in Fig,2. The values obtained for the control parameters are

€, = 0.085614, C: = 0.005035, Cs= 0.697956, Cy = 0.0002, C;= 0.000367 (2.5)

The penalty function is M = 5.99939. For these values of the control parameters the
characteristic polynomial is a Hurwitz polynomial; its roots are

hg = —0.0064, Ay = —0.001569 (2.6)
A3 = —0.037662 4- i 0.790725, Ae,p = —0.000085 - i 0.014039
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The criterion of existence of a periodic solution of the Liénard equation
@ +eg@=0
is established, Definite constraints are imposed on the functions f (z) and g (z), but only
for a certain, sufficiently wide range of the values of z, containing the coordinate origin,
Let us replace the given equation with an equivalent system given by
dz /dt =y, dy/dt= —yf(x)—¢glz) )
and introduce the notation

F@=\i@ds ¢@={s@in Q@=26—"yre+r{F@dr
0 0

0
x

p@)=2F @ —ha, r(x)=26@)+ F () —haF (1) + A F (@)ds
0
where A is any positive real number for which the conditions of the theorem hold,
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Theorem, Let f(z)and g (z) be such that the conditions of the theorem on the
existence and uniqueness of the solution hold for the system (1) and
1°, Function f(0) < 0.
2°, Numbers ¢ < b << 0 < ¢ <4 and A > 0 exist such that the functions g (x)
and p (z) change their sign in the manner shown below

g () < 0 when z € (a, 0), g (z) >0 when z & (0, d)
p (z) < 0 when z € (a, b), p (z) > 0 when z < (b, 0)
p {x) << 0 when z € (0, ¢) p (z) > 0 when z € (¢, d)

3°, Forz €[, «l,

M =min {Q(a). Q@R > Q@+ [V=Ap @@ + 2] p()|]?
Then the system (1) has at ledst one limit cycle,
Proof, Consider the family of curves

D, PY=y+pr@Ry+r@=C &)
Solving it for ¥ and taking into account the notation introduced above, we obtain

y=—"ap@E VC—Tr@—"%pP@] =—"%r@@)+ VCi=Q@) &)

Since
Q (z) = 2g (x) — Yoh%z + AF (z) = 2¢g (z) + YA [2F (z) — A 2] = 2g (z) + YoAp (z)
by Condition 2° we have
=< for z € (s, b), Q' @)>0 for ze€ (e, d)

i.e. Q (z) decreases monotonously in the interval (e, b) and increases monotonously in
the interval (¢, d). From z = & and z = ¢ the inequality in Condition 3° yields

Q@>0Q®). Q@>Q®), Q@>Qk), Q@>0
This means that the segments [Q (b), Q (a)] and |Q {¢), Q ()] of the y -axis intersect
and the number M, the smallest of the numbers Q (z) and Q (d) , is the upper end of the
segment common to both these segments,

et m=sup Q@ (b<z<e)

Obviously m < M, otherwise Condition 3° would not hold, From the definition of m
and M it follows that the segment [m, M] is contained within the intersection of two
segments [Q (b), @ (a)} and [Q (), @ (I)).

Let C be a fixed number satisfying the inequality m <{ € < M. Then the equation
Q (r) = C has two roots r;and ., in thiscase ¢ < z; < b and ¢ < 7, < d.

let 2, < zy < 75. Then if zy € (a, b) o1 7y € (¢, d), we have @ (z,) < C by virtue
of the monotonous behavior of Q@ ( z) within these intervals, On the other hand, if
zo € [b, ¢], we have Q (z,) << ¢ by virtue of the fact that € > m = sup {0 (x)} for
bz C.

In 'any case, according to (3) there are two real values of y on (3) corresponding to
each value of z = zywhen z; < zy < 72, and one value of ¥y corresponding to each of
the values « = z, and z = z,. This means that a simple closed curve belonging to the
family (2) and corresponding to the selected value of C € (m, M] lies between two
straight lines z = z, and z = z; . Since p (0) = 0 and Q (0) = 0, then by y O)==%VC
and this implies that the curves of (2) enclose the coordinate origin,

Equation (3) also implies directly that an increase in the value of C is accompanied
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by an increase in the distance between the points of intersection of the curves with any
straight line parallel to y-axis, i, e, if C2 > C,, the curve ® (z, y) = C, contains within
it the cuwrve @ (2, y) =

Differentiation of (2) followed by simplification yields, with (1) and the notation
introduced above taken into account,

a® /[ dt = —hy® — p (2) g (2}

We shall show that d® / d¢t < 0 on the curve @ (z, y) = M..

By 2°, the product p (z)g (z) > 0 on the segments (e, b) and (¢, d). Consequently

a0 I Aé
al \ 0 on those yaua ofthe ¢ cuive, which lie within two s au;ya, one bounded l‘)’ the

lines z == @ and = = b, and the other by z = ¢ and z = d.

We now find the sign of d® / dt on the upper arc y; and the lower arc g, of the curve

n=—"p@O+VI—-Q@ w=—"hr@—VH-0@
in the interval (b, ¢}. Condition 3° gives
M—Q>1V=TpEg @+l p(@1]* when z b, ¢}
from which we have
~al @+ VH=Q@®> V=V @Ez @)
Let b<2<0.Then p{x) >0,
n=—lap@I+ VI—Q@> V-5 @@ w>—1p@s@

hence

d® [ dt = —hy"1 — p (z) g (2) <O
Since p {z) > 0, we have

p@+ VI=Q@W>—"ap@)+ VH—=Q@), o —wu>n
consequently
—u>V=A0@HeE, w>—Alp@EgE
hence
db [ dt =— At — p (2} g (2) < O

In a similar manner we can show that d® / dt <C 0 on the upper and the lower arc of
the curve @ (z, y) = M in the interval.(Q, C), It follows that d® / dt <C 0 on the curve
® (2, y) = M belonging to (2).

Let us consider another family of curves

el N=%yr+6@=2C (4)

We can easily see that this also represents a family of closed curves enclosing each
other, containing the coordinate origin and such, that the value of C increases on the
passage from the inner to the outer curves,
Differentiating (4) we obtain, by (1),
de / dt = —y*f (2)

Since by Condition 1° f (0) <0, dg/dt >0 on all curves of (4) corresponding to
sufficiently small values of ¢. One of these curves and the curve ® (z, y) = M together
yield an annular region into which all trajectories of system (1) are directed, As it con-
tains no singular points, it must contain at least one stable limit cycle,
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The complete dynamic equations of Prandtl-Reuss [1] are examined in the rectangular
region, An exact solution is given for a problem which corresponds to some specially
selected boundary conditions and initial conditions,

The obtained solution is used to evaluate the correctness of some assumptions which
are applicable in the approximate solution of these equations [2],

1. The equations of Prandtl-Reuss are used for the description of dynamic processes

in such different media as metals and soils, These equations have the form

sighij =T (p),  dsijldt + hs;j —2Gey; (.1
where

Sig = =S4T POu €ij = &5 — seudij b= (2Gejsy5 — dT/A)(T

Here o0ij and e;; are tensors of stresses and velocities of deformation, p = /301 is the
pressure, G is the shear modulus, the operator d/dt is an absolute derivative in the sense
of [3], (It is assumed that the summation is carried out over recurring indices i, j, &k =
=1, 2, 3, Compressive stresses are taken as positive,)

The first of equations (1.1) is the plasticity condition of Mises. The function T (p)
which enters into this condition is taken in the form I' = 2 (kp + #)* where £ and & are
constants, The particular form of 7 (p) was selected by us on the basis of mathematical
convenience, However, experimental data for the soil [4] give just this type of relation-
ship,

The remaining equations (1,1) express the condition of coaxiality of stress tensors and
velocity tensors of plastic deformations, The value of i is selected such that the condi-
tion of plasticity is a consequence of these equations, In this connection it is assumed
that 2 >0, If it turns out that A <_ 0, then (1.1) should be replaced by the conventional
equations of elasticity,

The system of equations (1, 1) must be closed by means of some relationship between
the pressure and the density, This relationship can be quite complex, For example, it
can contain hysteresis loops,

So far not a single fairly general solution of equations (1, 1) is known, In the solution
of specific problems, therefore, these equations are usually simplified, For example, in



